Session-based Complementary Fashion Recommendations

Jui-Chieh Wu, José Antonio Sánchez Rodríguez, Humberto Corona
WE OFFER A SUCCESSFUL AND CURATED ASSORTMENT

> 400,000 articles from
> 2,000 international brands

LOCALIZATION of the assortment

HIGHLY EXPERIENCED category management

11 private labels

CURATED SHOPPING with Zalando
About Zalando

Assortment

> 400,000

Brands

> 2,000

Active Customers

> 28 m
What is Complementary Item Recommendation?
Our Baseline

- Based on item-item collaborative filtering
- High score items in different category
- Items similar to high score items if not enough recommendations
Limitations of the Baseline

- Static recommendation for everyone
- Low CTR
- Low conversion rate
Problem Statement

For a given user with an interaction history x_h and the anchor item x_t, select a list of complementary items y_1, y_2, \ldots, y_k from a set of candidates y.

$$y_1, y_2, \ldots, y_k \sim p(y \mid x_h, x_t)$$

How We Define Complementary Relationship

Two items x_i and x_j are complementary if they

1. Belong to different categories (shoe v.s. trousers)
2. Belong to two fashion-compatible categories
Problem Statement

\[y_1, y_2, \cdots, y_k \sim p(y | x_h, x_t) \]

- Complementary of \(x_t \)
- Whole Catalog

- Learn from the existing user response on the current baseline
- Learn from the re-sampled dataset
Creating a More Representative Dataset

Training a new model on top of the training data coming from the baseline constraints the capacity of the abstractions learned by the new model.

Solution
Instead of learning from the user behavior we observed on the current product, we sample behaviors from the *user interaction history* that satisfy our definition of complementary.
Creating a More Representative Dataset

Timeline

User Interaction history
Creating a More Representative Dataset

User Interaction History

Generated Sequences

Timeline

Anchor

Target

History

Target Window
Model Architecture

cross-entropy-loss

\[p(y \mid x_h, x_i) \]

Softmax

Score [1 x O]

Trilinear Combination

- User History Encoder
 - User History [M]
- Current Context Encoder
 - Anchor Item [1]
- Candidate Encoder
 - Candidates [O]

Liu et al., STAMP: ShortTerm Attention/Memory Priority Model for Session-based Recommendation. (KDD 2018).
Our Adjustments - Add Long Term Signals

\[
p(y \mid x_h, x_t)
\]

Softmax

Score [1 x O]

cross-entropy-loss

Trilinear Combination

Order History Encoder

User History Encoder

Current Context Encoder

Candidate Encoder

Order History [M]

User History [M]

Anchor Item [1]

Candidates [O]
Our Adjustments - Additive Combination Function

\[p(y | x_h, x_t) \]

Softmax

Score [1 x O]

\[(h_o + h_s + h_t)^T x_{ci} \]
Our Adjustments - Context Information Added

STAMP

v.s.

Our Model

Item Embedding

Image Embedding

Category Embedding

Time Difference Embedding

FFN

1 + Y

Concatenation
Evaluation Results - Offline

<table>
<thead>
<tr>
<th>Method</th>
<th>Recall@5</th>
<th>Order Recall@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Method</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Collaborative Filtering</td>
<td>0.29</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Evaluation Results - Online A/B Test

<table>
<thead>
<tr>
<th></th>
<th>CTR</th>
<th># Items Ordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our Method</td>
<td>+6.23%</td>
<td>+3.24%</td>
</tr>
<tr>
<td>Model</td>
<td>Recall@5</td>
<td>Order Recall@5</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>STAMP</td>
<td>0.221</td>
<td>0.206</td>
</tr>
<tr>
<td>STAMP + Long Term Signal</td>
<td>0.241</td>
<td>0.223</td>
</tr>
<tr>
<td>STAMP + Context Information</td>
<td>0.258</td>
<td>0.255</td>
</tr>
<tr>
<td>STAMP + Image Feature</td>
<td>0.264</td>
<td>0.240</td>
</tr>
<tr>
<td>Our Method</td>
<td>0.264</td>
<td>0.267</td>
</tr>
</tbody>
</table>
Conclusion

- We devised a personalized complementary fashion recommender that outperformed the baseline in an A/B test.

- We tailored STAMP, one of the state-of-the-art session recommenders, and yields better performance on our dataset.

- Through the ablation test, we assures the efficacy of the model improvements.
QUESTIONS?