Assessing Fashion Recommendations: A Multifaceted Offline Evaluation Approach

Jake Sherman, Chinmay Shukla, Rhonda Textor, Su Zhang, Amy A. Winecoff
About True Fit

- We provide footwear and apparel size and style recommendations
- Our clients range from large, multi-brand retailers (e.g., Macy’s), to smaller, single-brand retailers (e.g., Kate Spade)
- Over 100M people have received a recommendation from True Fit
Challenges of the fashion domain

- Different recommendations for different users (i.e., personalization) is a goal
- Accuracy alone is insufficient to measure offline performance
- Acute cold-start problem due to volume of “new” users
- Exceptional data sparsity
Objective

Developing a holistic offline evaluation approach that:

- Includes metrics to measure whether or not different users are getting different recommendations
- Performs evaluations for multiple user slices based on user interaction histories (i.e., new versus existing users) to measure cold-start performance
Measuring distinctness

Start by measuring the distinctness of a pair of users’ top-k recommendations:

\[AD_{k,i,j} = |L_{k,i} \triangle L_{k,j}| = |(L_{k,i} - L_{k,j}) \cup (L_{k,j} - L_{k,i})| \]

Then, take the average \(AD_{k,i,j} \) across all possible pairs of users:

\[AD_k = \frac{1}{\frac{1}{2}(U^2 - U)} \cdot \sum_{i=1}^{U} \sum_{j=i+1}^{U} AD_{k,i,j} \]

This is the symmetric difference between the two sets of recommendations.
Distinctness example for two users

A pair of users’ top-5 recommendations:

User 1:

User 2:
Distinctness example for two users

A pair of users’ top-5 recommendations:

User 1:

User 2:

6 recommendations out of the 10 are distinct
Measuring popularity

Start by measuring the relative popularity of a user’s top-k recommendations:

\[RP_{k,u} = \frac{\sum_{i=1}^{k} Q_{u,i}}{\sum_{i=1}^{k} Q_i} \]

Then, take the average of \(RP_{k,u} \) across all users:

\[RP_k = \frac{1}{U} \cdot \sum_{u=1}^{U} RP_{k,u} \]
Developing a holistic offline evaluation approach that:

- Includes metrics to measure whether or not different users are getting different recommendations
- Performs evaluations for multiple user slices based on user interaction histories (i.e., new versus existing users) to measure cold-start performance
Defining user slices based on user interactions in the training data

Training Data

Test Data

is a new user

is a view user

is a sale user
Objective

Developing a holistic offline evaluation approach that:

- Includes metrics to measure whether or not different users are getting different recommendations
- Performs evaluations for multiple user slices based on user interaction histories (i.e., new versus existing users) to measure cold-start performance
Demonstrating the value of our approach

In order to demonstrate the effectiveness of our proposed offline evaluation approach, we will:

- Create recommendations using 3 different recommendation strategies, for 3 different retailers
- Use our evaluation approach to reveal the strengths and weaknesses of each recommendation strategy
Our data is extremely sparse and faces major cold-start challenges

The majority of our users are new (no view or sale in the training data)

<table>
<thead>
<tr>
<th>Table 1: Descriptive Statistics for Training Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Retailer 1</td>
</tr>
<tr>
<td>Retailer 2</td>
</tr>
<tr>
<td>Retailer 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Descriptive Statistics for Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Users (%)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Retailer 1</td>
</tr>
<tr>
<td>Retailer 2</td>
</tr>
<tr>
<td>Retailer 3</td>
</tr>
</tbody>
</table>
Our data is extremely sparse and faces major cold-start challenges

The overwhelming majority of the user-item matrix is empty

The majority of our users are new (no view or sale in the training data)

<table>
<thead>
<tr>
<th>Table 1: Descriptive Statistics for Training Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Users</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Retailer 1</td>
</tr>
<tr>
<td>Retailer 2</td>
</tr>
<tr>
<td>Retailer 3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Descriptive Statistics for Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Users (%)</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Retailer 1</td>
</tr>
<tr>
<td>Retailer 2</td>
</tr>
<tr>
<td>Retailer 3</td>
</tr>
</tbody>
</table>
Fashion data is exceptionally sparse

Nonzeros per user, other datasets compared with True Fit

Many fewer nonzeros per user for True Fit compared with other datasets
How we setup our experiment

Recommendation strategies:

1. Most popular items (MP)
2. Collaborative filtering (CF)
3. Content-based modeling (CB)

Evaluation metrics:

- Standard metrics: \textit{normalized discounted cumulative gain at } k (NDCG_k)
- Our metrics: \textit{average distinctness at } k (AD_k), \textit{relative popularity at } k (RP_k)
Recommending popular items maximizes accuracy...

MP results in more accurate (higher NDCG_{10}) recommendations than CF or CB.

Figure 1: NDCG_{10} for Retailer 1. The yellow dotted line corresponds to the NDCG_{10} value for Retailer 1 that would result from a random ranking of the items.
Recommending popular items maximizes accuracy...

MP results in more accurate (higher NDCG_{10}) recommendations than CF or CB.

CF suffers from the cold-start problem, cannot make recommendations for 70%+ of users.

Figure 1: NDCG_{10} for Retailer 1. The yellow dotted line corresponds to the NDCG_{10} value for Retailer 1 that would result from a random ranking of the items.
...but results in recommendations that are not distinct...

MP recommendations are not distinct

Figure 2: AD_{10} for Retailer 1. Each error bar represents the 95% confidence interval of the distribution of 1,000 bootstrap samples of $AD_{k,i,j}$ values. The MP recommendation strategy produces the same recommendations for all users, resulting in values of 0.
...but results in recommendations that are not distinct...

MP recommendations are not distinct

While CF and CB both offer distinct recommendations, CF cannot make recommendations for a majority of our users.

Figure 2: AD_{10} for Retailer 1. Each error bar represents the 95% confidence interval of the distribution of 1,000 bootstrap samples of $AD_{k,i,j}$ values. The MP recommendation strategy produces the same recommendations for all users, resulting in values of 0.
...and are completely popularity-biased

MP recommendations are completely popularity biased

While CF and CB each offer less popularity-based recommendations than MB, CF, once again, suffers from the cold-start problem

Figure 3: RP_{10} for Retailer 1. Each error bar represents the 95% confidence interval of the distribution of 1,000 bootstrap samples of $RP_{k,u}$ values. By only recommending the most popular items, the MP recommendation strategy always produces values of 1.
Conclusions

In order to perform a comprehensive offline evaluation of a fashion recommender system, one must do the following:

- Use metrics to measure whether or not different users are getting different recommendations, in addition to accuracy
- Perform evaluations for multiple user slices based on user interaction histories (new versus existing users)
Thank you
Appendix
Explaining retailer-specific results

- We suspect that differences in patterns of retailer results driven by retailer sales distributions (popularity)
- High NDCG_{10} and RP_k of Retailer 2
- Retailer 2 being the exception where NDCG_{10} and RP_k are higher for CF than CB

Figure 4: Sales distributions for our three retailers. Items are ordered by popularity, with the most popular items at the bottom. The set of popular items that make up a third of sales is known as the short-head, while the set of remaining items make up the long-tail [4]. The yellow dashed line provides the demarcation between the items in the short-head and long-tail.